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STRENGTH AND ECONOMIC COMPARISON OF AUTOFRETTAGED
VERSUS JACKETED PRESSURE VESSEL CONSTRUCTION

Abstract Cross-Reference
Data
The theoretical elastic strength of autofrettaged Gun barrels
and jacketed thick-wall cylinders is presented in the
form of equations and graphs. The mechanism by which Pressur?
vessels
both processes increase the elastic strength of a
thick-wall cylinder is discussed and illustrated graph- Thick-wall
ically. The advantages of a combination of jacketing cylinders
and autofrettage for very thick-wall, pressure vessel Industrial
production

applications are discussed and illustrated by a specific

example. The economic advantages of autofrettage over Stgggfysis
jacketing are presented by a cost analysis of two specific

examples, namely the 175mm Gun, T256 and the 155mm How-

itzer T255.
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CONCLUSIONS

Autofrettage is more effective than jacketed construction as a means
of increasing the elastic load carrying capacity of pressurized thick-wall
cylinders. As a result of this greater effectiveness, pressure vessel design
based on the use of autofrettage offers the following significant advantages
over a jacketed configuration:

1. Decreased weight - For the same yield strength level and
allowable elastic operating pressure, an autofrettaged pressure
vessel will weigh substantially less.

2. Increased allowable pressures - For the same yield strength
level and configuration, the elastic load carrying capacity
is greater. 4

3. Decreased material strength requirements - For the same
operating pressure and configuration, the basic yield strength
requirements are reduced.

Autofrettage offers a significant economic advantage over jacketed
construction by eliminating the additional machining and material required
in a construction of two or more pieces. For example, unit savings apéroach"
ing $2500. are possible in large caliber gun tubes.

A combination jacketed and autofrettaged configuration may be utilized
to extend elastic breakdown pressures beyond available autofrettage pres-
sure capacity. '

RECOMMENDAT IONS

To realize the strength and economic advantages of autofrettage over
Jjacketed construction, it is recommended that:

1. Autofrettage be considered 8s a substitute for jacketing as
the primary method of manufacture for intermediate diameter
ratio, pressure vessel applications such as gun tubes, where
the production quantities justify the additional tooling costs.




2. A combination of autofrettage and jacketing be considered for
thick-wall pressure vessel applications where operating pressures exceed
160,000 pounds per square inch.

-5 & %,u}-eﬂ/a/nﬂf
T. E. DAVIDSON
Chief, Metal Working Section

L 2% ot 2L

D. P. KENDALL

Approved:

Chief, Industrial Processes Branch

)ﬁﬁe«U. Y. ma»ofuq

HAROLD V. MACKEY
Lt. Col., Ord. Corps
Chief, Research & Engineering Div.




INTRODUCT I ON

As a result of the severe weight limitations and extreme mobility
requirements placed on cannon by current and propoged warfare concepts,
it has become necessary to consider means for substantially increasing
the elastic load carrying capagity of gun tubes. The obvious approach is
that of increasing the strength of the materials used in tube construction.
Current yield stfength levels of 160,000 - 190,000 pounds per square inch,
however, are already approaching the limit of materials available for con-
figurations such as gun tubes. The alternative is the use of design concepts
and processes capable of increasing the elastic load carrying capacity. Two
such techniques are autofrettage and jacketing.

The desire to increase the load carrying capacity of pressure vessels
is not new. In this connection, over the years, such techniques as bore
quenching, wire wrapping, and the moreﬂcommon jacketing and autofrettage
have been devised. All of these techniques are based on the use of induced
residual stresses to counteract the firing or operating stresses.

Jacketing has been widely used in gun tubes, even at the current high
strength level, where weight was of primary concern. Recent investigations
and developments now make it possible to consider the application of the
autofrettage principle to current high strength materiais.

0BJECTIVE

It is the purpose of this study to evaluate the relative benefits of
jacketed versus autofrettaged thick-wall cylihder‘oonstrgction, from the
standpoints of theoretical elastic strengths and manufacturing costs.

DISCUSSION

Autofrettage and jacketing are both processes that increase the elastic
load carryiﬁg capacity of thick-wall cylinders by means of induced residual
stresses. The elastic strength increase is a result of the residual stresses
being opposite to the operating stresses, so that they must first be over-
come prior to the onset of yielding. This phenomenon can be readily realized
in the following equation for yielding at the bore of a pressurized thick-

wall cylinder, based on the Von Mises yield criterion, and assuming 0z = O

~0 )+ 0+ (0, +0,)° =207 (1)

(ot * Ot.r
where 0, is the residual bore stress, igduced either by autofrettage or
jacketing, and is opposite in sign to 0., the tangential component of the

operating stress.




Jacketing

The residuzl stresses are produced in a jacketed cylinder in the fol-
lowing manner: an inner and an outer tube, usually referred to as the liner
and jacket respectively, are made so that the outside diameter of the liner
is larger than the inside diameter of the jacket by a predetermined amount.
The jacket is then expanded by heating so that it can be slipped over the
liner. As the jacket cools it attempts to return to its original size. This
action is opposed by the liner, resulting in an interface pressure between
the two tubes and a compressive residual stress in the liner and a tensile
residual stress in the jacket. An example of this stress distribution is
shown in figure 1A.

To produce the optimum conditions in a jacketed tube the interface
pressure must be such that yielding under internal pressure will occur
simultaneously at the inner surface of the liner and jacket. If the inter-
face pressure is greater than this critical value, yielding will occur at
the bore of the jacket at an internal pressure less than the optimum. If it
is less than this critical value, yielding will occur at the bore of the
liner at g similar pressure.

The elastic solution for a jacketed thick-wall cylinder has been pre-
viously reported (1, et al.). However, for the purpose of comparing the
elastic load carrying capacities of jacketing and autofrettage pressure
vessel design, it may be helpful to cover the main points of this solution.

To develop the relationships expressing the elastic strength of jacketed
cylinders certain assumptions must be made:

1. Since weight is of primary concern, and therefore the highest
yield strength material available is utilized, it is assumed
that the liner and jacket are of equal yield strength, i.e.,

o =g ..
yl yJ

2. Considering the simplest and the most common case of a single
jacket type construction, it is also assumed that the liner
and jacket have equal diameter ratios since this will yield
the highest elastic strength, i.e. W; = w,.

From the above assumptions using Lames' equations, the stresses at the
inner surface of the jacket are:

2 2
w. +1 w.” +1
(T bl A (2)
W. -1 w -1

10



w.? -1
O'=—P-f_Pi—‘12_—_ (3)
w?-1

As a result of assuming equal liner and jacket diameter ratios, i.e., W; =

W where W is the total diameter

2

Wj = W and otj and °rj from

S =W.= D5 thenWW. =W, =W. =D
a J ¢ ? 173 1 3 a

2
ratio of the cylinder. Substituting W,

equations 2 and 3 into the Von Mises yield equation (assuming o, = 0)

2 2 2
o, +0, —0.,0, =0, (4)

yields, for the elastic breakdown condition,

p.U=1,p  ag L1 (5)
£
Ywi-1 Wi+ ow®

At the inside surface of the liner

2

-p W +1 Wy

Opy = P4 — 8Py — (6)
w2 -1 W -1
6., =P (7)
Substituting the value of P,;; from equation 5 yields

I pALl W

0.1 * P, ¥ - 20, ——— (8)
tl
1[W2—1 w*—] T

The elastic breakdown condition at the bore from equations 7, 8, and 4 is:

P, [-.]én + L+_W] = 20, w = Gy 15 3P, (9)

Letting Q

1
0 [~
+
o L
) |+
==

and R = . Lij
1+ 3W

]

and squaring equation 9 yields a quadratic equationl in P;. Solving this

yields:

P, = 2aR + Q% + % - 3R* (10)

A plot of this equation is shown in figure 2.

11




Autofrettage

The autofrettage process consists of subjecting the cylinder to inter-
nal pressure (overstrain pressure) of a large enough magnitude to cause
plastic deformation. The residual stresses resulting from this opgration
are due to the material near the bore being deformed to a greater extent
than that near the outside diameter, i.e. a plastic deformation gradient.
When the pressure is released the outside material is prevented fromreturn-
ing to its original position by the bore material, which results in the type
of residual stress distribution schematically shown in figure 1A.

In diameter ratios below approximately 2.2 optimum autofrettage is ob-
tained when the entire wall is plastically deformed, i.e., the 100% over-
strain condition. In this case the maximum internal pressure that an auto-
frettaged cylinder can withstand without further plastic deformation is
theoretically equal to the overstrain pressure. In diameter ratios above
2.2, however, the residual stresses resulting from the complete plastic
condition are of such a magnitude that reverse yielding occurs. The maxi-
mum allowable, elastic pressure in an autofrettaged cylinder thus approaches
a maximum. This relationship will be given later.

The magnitude of the pressure required to obtain 100% overstrain has
been experimentally determined for steel with a 165,000 pound per square
inch nominal yield strength (1) and is given by the following empirical
relationship:

%— =1.08 log W (11)
y

This relationship, along with the following equation for elastic breakdown
pressure in an unstressed monobloc cylinder based on the Von Mises yield
criterion, is shown in figure 2.

2

(0)

y v1 + 3wt

Equation (12) has been experimentally substantiated by the authors.
Combination Autofrettage and Jacketing

Maximum autofrettage in diamete® ratios greater than 2.2 is obtained
when the induced residual stress at the bore equals the yield strength of
the material. As previously discussed, in diameter ratios above 2.2 maximum
autofrettage can be obtained at less than 100% overstrain. Therefore, as the
diameter ratio increases, the interface between the plastic and elastic

12
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regions required for optimum autofrettage approaches the bore. This means
then, that in very thick-wall cylinders, a high yield strength is required
only near the bore with a lower value as the outside surface is approached.
This phenomenon makes possible the consideration of a combination auto-
frettage-jacketing system for thick-wall pressure vessel applications.

To demonstrate the merits of a combination of autofrettage and jacketing,
consider the hypothetical case of a pressure vessel, with an elastic oper-
ating pressure of 245,000 pounds pe# square inch and bore diameter of two
inches. To obtain material with a yield strength of 245,000 - 250,000 pounds
per square inch in a configuration common to most pressure vessels is diffi-
cult due to the hardenability limitations of steel. Even if material of this
strength level were available to allow a single or even a two-piece construc-
tion, the inherent low ductility of materials at extremely high strength
levels would represent a serious safety hazard from the standpoint of catas-
trophic failure.

Applying the phenomenon discussed in the prior paragraph, only the
material near the bore needs to be of maximum strength thus permitting the
use of a liner of 245,000 - 250,000 pounds per square inch yield strength
with a lower strength jacket. In the case considered, the diameter ratio of
the liner and jacket are 2.5 and 3.0 respectively with the yield strength of
the jacket being 160,000 pounds per square inch.

Remembering that optimum autofrettage is obtained when the magnitude of
the induced residual stress in the bore of the liner is equal to the yield
strength of the material in compression, it is apparent that the 160,000
pound per square inch jacket is not able to induce a residual bore stress of
245,000 pounds per square inch. Also, if autofrettage alone were used, pres-
sure of this magnitude is well beyond the capabilities of current autofrettage
equipment ﬁﬁich will attain 200,000 pounds per square inch. The required
compressive residual stress then is produced by partially autofrettaging the
liner to 190,000 pounds per square inch which will result in the residual
stress distribution shown in figure 3A. Then the jacket is shrunk onto the
liner with an interface pressure necessary to produce the difference between
the required and the autofrettage residual stress i.e. 245,000 - 170,000
pounds per square inch. The final combined residual stress distribution is
shown in figure 3B. Figure 3C depicts the algebraic summation of the resid-
ual and elastic stresses associated with a 24%,000 pounds per square inch
internal pressure.

14




In ¢ylinders with a diameter ratio of greater than 2.2 where full auto-

frettage has been attained i.e., o, = o, the maximum elastic operating pres-

sure is, from equation (1) assuming o, = 0

P 3w -2w -2

4
oy 3T + 1

(13)

The sample configuration considered then, will remain elastic up to a pres-
sure of 245,000 pounds per square inch. If one slightly increases the over-
strain pressure for the liner and/or the jacket interface pressure, the re-
sulting residual stress at the bore will exceed the yield strength of the
liner material and reverse yielding will occur. However, it is possible to
operate such a vessel slightly above the optimum autofrettage pressures i.e.,
up to the new overstrain pressure, if a small amount of recoverable plastic
deformation during operation is not harmful.

Strength Comparison

Figure 1 shows a comparison of the mechanism by which the residual
stresses produced by jacketing and autofrettage increase the elastic strength.
For simplicity it is based on the maximum shear stress (Tresca) theory of
yielding which is slightly on the conservative side. The same analysis based
on the Von Mises yield criterion would give similar results.

Figure 1A shows the residual stress distributions which would be pro-
duced in a cylinder with a total diameter ratio of 2.0 for both optimum auto-
frettaged and two-component jacketed construction. Figure 1B shows the elas-
tic stress which would be produced by internal firing pressures of 80,000
and 111,000 pounds per square inch if the material was considered to remain
elastic at these pressures. Actually, both of these pressures would produce
plastic flow if the tube was of unstressed, monobloc construction.

By applying the principle of superposition and adding the residual and
firing or operating stresses algebraically, figure 1C is obtained. From this
it can be seen that the jacketed configuration cylinder will yield simulta-
neously at the bore of the jacket and the liner at a pressure of 80,000
pounds per square inch. In the autofrettaged cylinder, yielding will occur
throughout the wall at a pressure of 111,000 pounds per square inch.

Figure 2 represents a plot of pressure factor (P.F.) versus diameter
ratio for jacketed, autofrettaged and monobloc construction from equations
(10), (11) and (12) respectively. As can be noted and as was shown in figure
1 for a specific diameter ratio, autofrettage offers a significant strength
advantage over a two-component jacketed configuration. It should be noted

15
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however, that as the number of jackets increases, the residual stress mag-
nitude also increases and approaches that forbautofrettage. Thus, for a
multi-jacketed configuration the difference between the autofrettage and
jacketed curve will decrease. It can be shown in fact, that an infinite
number of jackets will yield the same results as autofrettage for any given
diameter ratio.

Econcmic Comparison

The manufacture of pressure vessels, particularly gun tubes, based on
the use of autofrettage is generally much less expensive than that associ-
ated with jacketed construction. This is due to autofrettage not requiring
a separate liner and jacket thus eliminating the machining associated with
the jacket. This cost is usually considerable since very close tolerances
must be maintained in the bore of the jacket to insure the correct amount
of interference between the jacket and liner and thus the correct interface
pressure.

Another saving that could be realized by using autofrettage is a re-
duction in forging costs. This is due to only one forging being required
instead of two and, if the configuration remains the same, the material
strength requirements being reduced.

The actual jacketing operation on a small and relatively short pressure
vessel is not difficult. However, as the length increases, as in a gun tube,
difficulties may arise due to distortion of the jacket which may inhibit the
placing of the jacket onto the liner thus increasing the cost. For the pur-
pose of cost estimates, however, it is assumed that the costs of the actual
autofrettage and jacketing operations are effectively equal and therefore
only the major manufacturing items will be considered.

A factor which tends to increase the cost of using the autofrettage
process is the requirement for restraining containers and pressure closures
and seals. Although this comprises a considerable initial investment, over
a reasonably large number of tubes it becomes an insignificant part of the
unit manufacturing cost.

A new process known as the swaging method of autofrettage(2) is now
under development. It will eliminate the need for restraining containers
and also the critical machining of the exterior surface prior to auto-
frettage. This will result in further cost reductions.

Applications

To demonstrate both the strength and economic advantage of auto-
frettage over jacketed comnstruction, two examples will be discussed. In
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both cases, the configuration will be fixed to that common to a jacketed
construction.

175MM Gun T256

This gun tube, as schematically shown in figure 4, is designed as a
two-piece construction with both jacket and liner having a yield strength
of 160,000 - 190,000 pounds per square inch.

Table I depicts the relative costs of this tube for both the jacketed
and autofrettaged configuration. As can be seen, the total savings per
tube, due primarily to the elimination of the jacket, is $2454.00. Although
not included, there may be further savings in basic material cost, as a re-
sult of having only a single forging instead of two.

As a result of having the configuration fixed, the autofrettaged tube
may be fabricated of a lower strength material. Incorporating current auto-
frettage design factors, the material yield strength requirements may be
reduced from 160,000 - 190,000 pounds per square inch to 120,000 pounds per
square inch. This reduced material strength will not only enhance forging
manufacture but may make possible substantial savings in machining costs as
compared to that for higher strength materials.

155 MM Howitzer T255

This gun, as can be seen from figure 5, is substantially smaller than
the prior example. In this case, also as shown in table I, savings of
$542.00 per tube due to the elimination of the jacket are possible.
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